What happens to my body after death? Final Disposition Options: Environmental Costs & Benefits

What matters most to you?

Environmental impact? Religious, family or cultural tradition? Cost? Convenience? Ceremony with the body and/or memorialization or ceremony with the remains? Working with a locally owned and operated facility? Relationship with established conservation stewards?

METHOD	NET CARBON FOOTPRINT	FUEL EXPENDITURE	LEFT-OVERS FOR DISPOSAL	LAND ACREAGE PROTECTED	ENVIRO BENEFITS/ COSTS
Conservation Burial	+ Sequesters 25 lbs. of CO ₂ per burial, 10 tons per acre.	— Transportation to the cemetery.	Not applicable	+ Unlimited. + Strategic component of a complete land conservation plan.	+ Land protection. + Nutrient contributions to soil communities.
Human Composting	 Indeterminate greenhouse emissions. 	 Bulking agents (alfalfa, wood chips): sowing, watering, harvesting, processing, transporting to facility; storage. Construction, heating, cooling, maintenance of facility and its operating units. Transporting of finished material. 	— 1+ cubic yard of leftover material Including 10-15 lbs. of pulverized bone (calcium phosphate and sodium which is 11.8 pH, 200-2000 times what plants can tolerate).	Not applicable	 Materials acquisition. Facility maintenance. Trucking of leftover materials. Smothered plant and soil communities in surface disposal. Restoration of depleted soil if intentionally tilled or incorporated.
Alkaline Hydrolysis	 150 to 250 lbs. CO₂ per person. Most effluent will be turned into carbon and nitrogenous GHG by public wastewater treatment facilities. 	— Electricity or propane to heat 100 gallons of water under pressure 3-12 hrs.— — Processing and transportation of potassium hydroxide (lye).	— 100 to 300 gallons of effluent and 10-15 lbs. pulverized bone (calcium phosphate and sodium, which is 11.8 pH, 200–2000 times what plants can tolerate).	Not applicable	— Potential algae bloom from phosphorus run-off due to scattering. — Tree ringing (girdling) from burial close to tree roots. — Disposal of effluent (no state EPA has permitting).
Flame Cremation	 250 to 526 lbs. CO₂ emissions per person. Mercury, particulate emissions into air and waterways. 	— Up to 500 gallons of fuel, usually natural gas, to burn @ 1700 to 2000° for 3-4 hours.	— 7-10 lbs. of pulverized bone (calcium phosphate and sodium, which is 11.8 pH, 200- 2000 times what plants can tolerate).	Not applicable	 — Algae blooms from phosphorus run-off. — Tree ringing from burial close to tree roots. — Mercury poisoning of air and water.

FOR MORE INFORMATION:

- State-based, non-commercial information: Oregon Funeral Resources & Education at Oregonfuneral.org and Washington Funeral Resources & Education at Washingtonfuneral.org
- Research-based information on environmentally responsible disposition options, see:
 - o Cremation Curious https://vimeo.com/767868604
 - o The Natural Burial Experience https://vimeo.com/769978957
- Educational programs and courses: RedesigningtheEnd.com at redesigningtheend.com

Natural Burial (green burial, conservation burial)

- Seguesters 25 lbs. of carbon per person
- Protects land for community use; protects animal habitat
- Avoids environmental harms of embalming, use of concrete or metal grave liners, and imported or manufactured casket materials

Flame Cremation

- Emits 250 to 536 lbs. of carbon per person
- Burns fossil fuels (natural gas) for 2 to 3 hours at 1700 to 1900° F
- Releases mercury, nitrous oxide, and particulate matter into air and water (Minnesota study 14% of mercury emission attributable to crematories)
- Nutrients incinerated or locked and unavailable
- Phosphorus run-off from scattering creates algae bloom that kills fish and plants; girdles trees, killing microbial and plant communities
- Increased risk of radiopharmaceutical contamination for crematory operators (Journal of the American Medical Association, 2.26.19)
- Final product: 7 to 10+ lbs. of pulverized bone comprised of calcium phosphate and sodium (pH of 11.8; 200 2000x too alkaline for plants/roots to tolerate)

Alkaline Hydrolysis (water cremation, bio cremation, aquamation, aqua cremation)

- Emits 150 to 250 lbs. of carbon per person through applying 100 to 300 gallons of 200 to 350° pressurized water in a potassium hydroxide alkaline solution (*lye*) for 3 to 12 hours
- Cytotoxins and embalming fluid neutralized; mercury captured but not mitigated
- Uses 80% less energy than flame cremation; emits 20% less CO₂
- Leftover: 100 to 300 gallons of effluent, no current regulations for safe disposal
- Final product: 10 to 15 lbs. finely pulverized bone (20 to 32% more than flame cremation)

Human Composting (natural organic reduction/NOR, terramation, soil transformation, Precision Organics)

- Carbon emissions inestimable at this time that include:
 - Industrial facility construction if in an urban or suburban setting
 - Commercial production and transport of feedstock and bulking agents such as alfalfa and wood chips used for the comporting process (for reference, alfalfa production uses a third of the water needed for livestock irrigation which accounts for 86% of the water draining the Colorado River Basin)
 - Fuel to transport and dispose of a pick-up truck's load quantity of leftover composted material for each composted body to a separate location
 - Resulting composted material can be retained by the family or donated.
- Material may be disposed of in established, non-profit conservation property to support soil restoration in depleted areas (beware of surface dumping that is not part of a scientificallybased conservation plan)
- Takes 2+/- months for microbes to break down tissue
 - Low impact if managed as natural decomposition in a non-industrial setting
 - Fuel costs to control temperature, humidity, and other facility functions in industrial facilities
- Bones removed, pulverized, returned to mix
- Final product: 1 to 1.5+ cubic yards leftover composted material to transport